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Gauge Symmetry and Supersymmetric Two-Particle 
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An analogy between the removal of nonphysical relative time (or relative energy) 
in the supersymmetric two-particle problem and the account of local gauge 
invariance in supersymmetric quantum field theory is discussed. A group of 
gauge transformations for the Bethe-Salpeter amplitudes is suggested, the 
invariants of which are the relativistic three-dimensional (quasipotential) wave 
functions in the Logunov-Tavkhelidze approach. Subsidiary conditions imposed 
on the Bethe-Salpeter amplitudes in the Todorov approach are shown to be 
equivalent to appropriate gauge fixing. 

The Bethe-Salpeter  (BS) equations (Bethe and Salpeter, 1951) are a 
basic tool in investigations of  the two-particle processes and bound-state 
problems in quantum field theory. However,  a probabilistic interpretation 
of  the BS ampli tude is not possible because of the indefiniteness of  the 
norm. This difficulty is solved by various modifications of  the quasipotential 
approach (Logunov and Tavkhelidze, 1963; Kadyshevsky, 1968; Bogolubov, 
1970; TodQrov, 1971; Faustov, 1973; Garsevanishvili  et al., 1985), that is, 
by essentially three-dimensional formulations of  the bound-state problem. 
The relative time or the relative energy is eliminated and the quasipotential 
wave functions are determined by the BS amplitudes on a certain space-time 
surface. The latter approach was generalized in Zaikov (1983, 1985) for the 
supersymmetric  case also. The supersymmetric version of the Bethe-Salpeter  
equation was given earlier in the paper  of  Delburgo and Jervis (1974). 

Similar difficulties with the nonphysical degrees of  f reedom are charac- 
teristic also of  the gauge field theories. There the problem can be resolved 
in two different ways using the local gauge symmetry: First, one can 
formulate the theory in terms of  gauge-invariant quantities, and second, an 
appropriate  gauge can be fixed and thus one of the components  of  the 
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gauge field is eliminated. It is the exact gauge symmetry that justifies the 
additional conditions and guarantees the independence of the result on 
their choice. 

In Koudinov and Zaikov (1982) a symmetry of  the relativistic two- 
particle amplitude was studied and it was shown that the quasipotential 
operation of  "equal-times" and also the subsidiary conditions on the wave 
function can be understood as implications of  the corresponding invariance 
in complete analogy with the gauge theories. In the present article the results 
of  the paper of Koudinov and Zaikov (1982) are generalized for the super- 
symmetric case for which the three-dimensional equations were written 
(Zaikov, 1983, 1985). 

Let us consider the supersymmetric two-particle BS amplitude (Zaikov, 
1983, 1985): 

�9 ~(X, x; 0,, 02)=(0l T(~+(X+l.t2 x, O1)(~)(X-]..l~lX, 02))l~,j, j3) (1) 

Here X=tZlXl+l~2x2 and x = x l - x z  denote the center-of-mass and the 
relative coordinates, respectively, and ~ is the total momentum. For free 
particles the parameters/xl and/22 are easily found in terms of  their masses: 

l~,=ml/(m,+m2),  I, z2=m2/(m1+m2) 

while for the interacting particles the only restriction on the values of/xl,2 
is 

/~1 +/22 = 1 

Thus, the position of the center of  mass on the line between xl and x2 is 
not de fned  and we consider the group of transformations with parameter A : 

x '~=x~+Ax.  

The BS amplitude then is transformed as follows: 

xtr~(X, x; 01, 02) = xtr~(x + Ax, x; 01, 02) = exp(iAx~) xtr(x, x; 01,02) (2) 

which looks like the U(1) gauge transformation. In the ordinary case the 
latter is evident (see Koudinov and Zaikov, 1982). Here I will show that 
the same is true in the supersymmetric case also. I restrict consideration to 
the chiral superfields qb+(x, 0) and +- (x ,  0), where + ( - )  denote right (left) 
chiral superfield. Then the BS amplitude can be written in the following 
form (Zaikov, 1983, 1985): 

' ++ 02)\ �9 + (X, x; 01, 

, ~ ( x ,  x; 0,,  02) = 'I'~+(x' x; 01 ,02) |  (3) 
. ~ - ( x ,  x; o,, o2)1 

I 

,t,~-(x, x; o,, o2)/ 
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Here ~ b  (a, b = + , - )  are the BS amplitudes (1) satisfying the chirality 
conditions: 

~-~+)~<-).b = 0, ~- (+)~+r  = 0 (a, b = +, - )  (4) 

where 

( ~ ) o  = o1007, (~Do  = oloo~ ( j  = 1, 2) 

are spinor covariant derivatives for chiral fields. 
Then from (4) it follows that (2) are gauge transformations because 

they do not change the chirality of the BS amplitudes (3) (West, 1983). 
Now, following Koudinov and Zaikov (1982), I show that the supersym- 
metric version of the relativistic three-dimensional approach can be 
expressed in terms of gauge-invariant [with respect to the transformations 
(2)] quantities [the Logunov-Tavkhelidze approach (Zaikov, 1983)] or by 
gauge fixing [the Todorov approach (Zaikov, 1985)]. 

Let us start with the investigation of the "gauge" invariant quantities. 
Transcribing equation (2) in the momentum space, one obtains 

~ ( p ;  0 1 , 0 2 ) - - > ~ ( p + h ~ ;  0,, 02) (5) 

where ~ ( p ;  01, 02) is the Fourier transform of BS amplitude (1) with 
respect to the relative coordinate: 

xtt~(X, x; 01,02)= e x p ( i ~ X ) ~ ( x ;  01, 02) 

�9 .9(x; 01,0z) = I d4p exp(ipx) ~ ;  01, 02) 

The linear invariant of the "gauge" transformation (5) is 

at t~(p•  ; 01, 02) = f dPl E ~(p ;  01, 02) ; 3apl =0  

which in the coordinate space corresponds to the "one-time" quasipotential 
wave function 

qt~(x• ; 01,02)= f dxrl ~[Xll + eyll(01- 02)]q~(x; 01,02) (6) 
./ 

where 

Here two particular cases are of interest. In the rest frame (in this frame 
the fermionic sector is also fixed) we get the Logunov-Tavkhelidze wave 
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functions (Logunov and Tavkhelidze, 1963; Zaikov, 1983): 

" I '~IfE(X; 01, 02)= dxo ~(Xo)~(Xo, x; 0,, 02) 

=~IfE(0, X; 01, 02) 

WE(p; 01, 0 2 ) = f  dpo'u 0~, 02) 

If ~ is lightlike, one obtains the "one-time" wave function on the light 
cone (Garsevanishvili et al., 1985; Zaikov, 1983): 

~ + ( x _ ,  xi ; 01, 02) = f dx+ 8(x+)~+(x+, x_, x• ; 01, 02) 

W~+(p-,p• 01, o2)= f dp_ qt~+(p+,p_,p• O1, 02) 

where 

~+ = (~o+ ~3)/2, ~_ = ( ~ o -  ~3)/2 = 0, ~ •  (~l ,  ~2) =0  

The second way to get rid of nonphysical "gauge" degrees of freedom 
is to fix an appropriate "gauge," that is, to impose on the BS amplitude 
some subsidiary condition. One of them is the Markov-Yukawa condition 
(Markov, 1940; Yukawa, 1950): 

(~p )~ (p ;  0,, 02)=0 (7) 

It does fix the "gauge," since if the BS amplitude ~ ( p ;  01,02) satisfies 
(7), then the transformed amplitude ~ ; ( p ;  0~, 0 2 ) = ~ ( p + A ~ ;  0~, 02) 
satisfies (7) only for A = 0. Note that (7) is invariant with respect to the 
supertransformations, which follows from the commutativity of the momen- 
tum operator with the odd generators of the supersymmetry. In the coordin- 
ate space the condition (7) has the form 

O2~I~d;o(X, x;  01, 02 ) /OX I~ OXl~ = 0 

and resembles the Lorentz gauge 

a . . ( x ,  x; o~, o2)/ox. = 0  

if the notation 

~If/~(X, x; 01,02) = 0~.~(X, x; 011~ I, 02) lax  p" 

is introduced and ~ . ( X ,  x; 01,02) is regarded as an analog of the vector 
gauge superfield. 
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Any function satisfying equation (7) can be represented in the form 

at r~(p ,  0 i ,  02) = r177 ; 01, 02) 

where pjj and p• are given by (6). 
Finally, note that the corresponding supersymmetric three-dimensional 

equations were written down in Zaikov (1983, 1985). Also, in the supersym- 
metric case the Todorov approach is more convenient because of the 
invariance of the subsidiary condition (7) with respect to the supe~ransfor- 
mations. 
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